Λύθηκε μετά από 100 χρόνια το πρόβλημα του αριθμού 3 – Μαθηματικοί βρήκαν νέο τρόπο γραφής 

22/9/19 | 0 | 0 | 142 εμφανίσεις

Λίγες εβδομάδες μετά την επίλυση ενός ασύλληπτου προβλήματα που αφορούσε τον αριθμό 42, Μαθητικοί βρήκαν την λύση σε ένα ακόμη πιο δύσκολο πρόβλημα για τον αριθμό 3.

Ο Αντριου Μπούκερ από το Πανεπιστήμιο του Μπρίστολ στο Ηνωμένο Βασίλειο και ο Αντριου Σάδερλαντ από το MIT [ Massachusetts Institute of Technology] βρήκαν μια μεγάλη λύση στο μαθηματικό πρόβλημα που είναι γνωστό ως γινόμενο των τριών κύβων.

Το πρόβλημα ερωτά κατά πόσον οποιοσδήποτε ακέραιος αριθμός μπορεί να αντιπροσωπευθεί ως το σύνολο τριών αριθμών εις τον κύβο. Υπήρχαν ήδη δυο γνωστές λύσεις για τον αριθμό 3, και οι δυο τους περιλαμβάνουν μικρούς αριθμούς: 1^3 + 1^3 + 1^3 and 4^3 + 4^3 + (-5)^3.

Όμως οι Μαθηματικοί έψαχναν για μια τρίτη λύση επί δεκαετίες. Η λύση που βρήκαν ο Μπρούκερ και ο Σάδερλαντ είναι:
569936821221962380720^3 + (-569936821113563493509)^3 + (-472715493453327032)^3 = 3

Νωρίτερα μέσα στον Σεπτέμβριο, το ίδιο ζευγάρι επιστημόνων βρήκε τη λύση για το ίδιο πρόβλημα όσον αφορά τον αριθμό 42, πρόβλημα που παρέμενε χωρίς λύση εδώ και περίπου 100 χρόνια.

Για να βρουν τη λύση οι δυο επιστήμονες δούλεψαν σε συνεργασία με την εταιρία λογισμικών Charity Engine προκειμένου να τρέξουν έναν αλγόριθμο στους αδρανείς υπολογιστές περίπου 500.000 εθελοντών.

Για τον αριθμό 3, το σύνολο του χρόνου υπολογισμού εάν γινόταν από έναν μόνον computer σε διαρκή λειτουργία θα ήταν τέσσερα εκατομμύρια ώρες, ή πάνω από 456 χρόνια.
Όταν ένας αριθμός μπορεί να εκφραστεί ως το σύνολο τριών κύβων, υπάρχουν άπειρες δυνατές λύσεις, λέει ο Μπρούκερ. “Οπότε θα πρέπει να υπάρχουν άπειρες δυνατές λύσεις για το 3, και εμείς μόλις βρήκαν την τρίτη”.

Υπάρχει λόγος που ήταν τόσο δύσκολο να βρεθεί η τρίτη λύση για το 3. “Εάν κοιτάξεις μόνο τις λύσεις για τον οποιονδήποτε αριθμό, μοιάζουν τυχαίες”, λέει. “Εμείς πιστεύουμε ότι εάν μπορέσεις να επεξεργαστεί τεράστιες ποσότητες λύσεων – φυσικά αυτό δεν είναι δυνατό, επειδή δεν μπορείς να έχεις τόσους πολλούς αριθμούς τόσο γρήγορα, αλλά εάν μπορούσες, υπάρχει μια γενική τάση σ’ αυτές: ότι τα μεγέθη των ψηφίων μεγαλώνουν τελείως γραμματικά και αντίστοιχα με τον αριθμό των λύσεων που βρίσκεις”.

Αποδεικνύεται ότι αυτός ο ρυθμός αύξησης είναι εξαιρετικά μικρός για τον αριθμό 3 – μόλις 114. Μ’ άλλα λόγια, αριθμοί με αργό ρυθμό αύξησης έχουν λιγότερες λύσεις με μικρότερο αριθμό ψηφίων.

Οι δυο επιστήμονες επίσης βρήκαν λύση και στο πρόβλημα για τον αριθμό 906. Γνωρίζουμε μετά βεβαιότητος ότι ορισμένοι αριθμοί, όπως το 4, 5 και 13, δεν μπορούν να εκφραστούν ως σύνολο τριών κύβων. Τώρα πλέον απομένουν εννιά ανεπίλυτοι αριθμοί μικρότεροι του 1000.

Οι Μαθηματικοί θεωρούν πως κι αυτοί μπορούν να γραφτούν ως σύνολο τριών κύβων, αλλά αυτό δεν το γνωρίζουμε ακόμη.

https://www.pronews.gr/epistimes/806473_lythike-meta-apo-100-hronia-provlima-toy-arithmoy-3-mathimatikoi-vrikan-neo-tropo

Category: Ειδησεις

Leave a Reply

 

Το σχόλιο της ημέρας

    13/10/19 | (1 σχόλια)
    Γράφει ο τρυποκάρυδος  Θα μετατραπεί για την Τουρκία, η εισβολή στη Συρία, ανατολικά του Ευφράτη, σε νέο Βιετνάμ; Όχι, ο ασθενής θα υποχωρήσει όσο του επιβάλλει η αδυναμία του και ο ισχυρός θα πάρει ότι του επιτρέπει η ισχύς του. ...

Διαφήμιση

Ροή Ειδήσεων




Εφημερίδες


Φωτογραφία της ημέρας